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ABSTRACT

Many private and public stakeholders are stronffigcéed by the impact of earthquakes on a regional
basis rather than on a single property at a spesife. The stakeholders could be government and
relief organizations that need to prepare for fitevents and manage emergency response, or private
organizations that have spatially distributed ass®@fhether for mitigating future seismic risk or
managing response after an earthquake, regionaksment of the earthquake impact requires a
probabilistic description of the ground motion dighat an event is capable of generating or has jus
generated. With knowledge, albeit probabilisticthe level of ground shaking at a regional lewele
could more accurately estimate, for example, 1)beetary losses caused to specific structures @wne
by a corporation or insured by an insurance comp&pythe number of injuries, casualties, and
homeless people in a region; 3) whether the adoessrtain critical buildings, such as hospitalgghmn

be restricted due to yellow or red tagging; andh4) probability that distributed lifeline networksr
power, water, and transportation may be interrupted

The probabilistic assessment of ground motion patara (e.g., peak ground acceleration or spectral
guantities) at an individual site based on the ewaagnitude, the source-to-site distance, anddbal |
soil conditions is a consolidated practice thattsthin the late 60’s. Much less attention hasnbee
devoted, however, to estimating the statisticaledelence of ground motion intensities from a single
event at multiple sites. (Note that here wendbintend to study the similarity, or coherence, hie t
time domain or frequency domain of ground motiagnais at a point in time but rather the correlation
of two peak values of oscillator response obsemast the entire duration of the ground motion.) In
general, three effects account for correlation mmfugd motion parameters at two sites: a) they have
been generated by the same earthquake (e.g., astriggs-drop earthquake may generate ground
motions in the region that are, on average, highan the median values from events of the same
magnitude at all sites); b) the seismic waves traver a similar path from source to site; andinjilar

soil conditions (due to possible bias in the preadiic equation used to estimate the median ground
motion at the sites). Modern ground motion attéionaequations implicitly recognize the first caude
dependency via a specific inter-event error termh, araturally, minimize the effect of the third. &h
second source of correlation, which is not addksseattenuation relationships for single sites, is
crucial for the spatially distributed applicatioaddressed here. Limited research on this topicate d
indicates that correlation of peak ground accelamaor velocity values decreases with increasing
spacing between two sites. The few published modasvever, do not agree on the amount of
correlation and on how fast the correlation diesmavith distance. The site-to-site correlation tiey
ground motion parameters that are good predictérstractural response, such as elastic spectral
accelerationS,(T) at a periodr, to date has been only partially investigated.

This study is divided in three parts. Firstly, vwestigate the nature of spatial correlation intlsgtic
ground motion fields both to support results fowsing real recordings (see companion report by
Jayaram and Baker, 2008b), and also to exploresssuch as isotropy and second-order statiorgdrity
the correlation function, that cannot be studiethweal data because the number of recordingsnipr a
single event is never sufficiently large. Secondlie show how the Vector Probabilistic Seismic
Hazard Analysis (VPSHA) tool can incorporate thetsp correlation of ground motion and be
successfully used for computing the joint seismaedrd a multiple sites. The joint hazard forms the
basis for assessing the likelihood that a portfofigtructures at those sites may incur monetasgds
due to ground shaking effects. Thirdly, we exglcihodel the ground motion spatial correlation in
assessing earthquake losses using a Monte Carldasiom technique for portfolios comprising a
number of structures that is too large for the VIRS6bI to handle via numerical integration.



1 SCOPE OF WORK AND MOTIVATION

Many private and public stakeholders are strondflgcted by the impact of earthquakes on a regional
basis rather than on a single property at a spesitie. In the aftermath of large events, pubbdibs,
such as government agencies and relief organizataord private entities, such as corporations ity u
companies, need to assess the potential damageregicmal level in order to plan their emergency
responses in a timely manner. The same organizatitso need to assess risks from future earthquakes
before they occur in order to take mitigation awsisuch as retrofitting and acquiring insurancescage.

The impact of an event that just happened, or nhighpen in the future, can only be accurately etatl

by considering the distribution of ground motioteimsity at multiple sites throughout the affectegion.

Earthquakes that occur in some seismically actneas of the world such as California, Japan and
Taiwan, are recorded by extended networks of statiavhile other areas such Mexico and Turkey are
less well instrumented. In any of these regionsyeéwer, the severity of the shaking is only knowrthat
station locations, while the shaking at other lmre is uncertain. The level of uncertainty incesawith
increasing distance from nearby recording stati®he. damage to structures, and therefore the edonom
and life loss caused by earthquakes, has been dioowanrelate well with ground motion parameterat th
measure the peak response of simple single-dedifeeedlom (SDOF) oscillators with the same
fundamental period of the real structures. Foeo#pplications, such as the prediction of liquidacof
saturated sandy soil or the response of buriedipgs the peak responses of the ground, sucheas th
horizontal Peak Ground Acceleration (PGA) and Vigo(PGV), are considered to be more accurate
estimators of the damage severity. With improvedwkedge of the probability distributions of relevan
ground motion parameters at a regional level, anddcmore accurately estimate, for example, 1) the
monetary losses associated with structures owneal diyrporation or insured by an insurance company,
2) the number of injuries, casualties, and homegessple in a certain area; 3) whether the access to
certain critical buildings, such as hospitalsjkely to be restricted due to likely yellow or rebging; 4)

the probability that lifeline networks for powerater, and transportation may be interrupted.

11 Why are ground motion intensities at different sites correlated random variables?

The probabilistic assessment of ground motion paters at a site based on the magnitude of the event
the source-to-site distance, and the local soititmms is a consolidated practice that startethenlate

60’s. Many predictive equations have been develapther from empirical data or from mathematical
models when historical data are insufficient. Thesgpiations are appropriate for estimating the
parameters of the ground motion at a specific skiich less attention has been devoted, however, to
estimating the statistical dependence of groundamantensities from a single event at multipleesit If

this dependency is neglected then ground motiomegathat are, for example, consistently very langgr

a spatially extended area will have a negligiblebpbility of being observed. As the Northridge
earthquake showed clearly, these cases do ocaldircam cause severe damage over a large area that
cannot be predicted unless spatial ground motiorelztion is adequately modeled.

In general, the values of a ground motion paranstéwo sites are correlated for three reasansthey
have been generated by the same earthquake (dmh @tress-drop earthquake may generate ground
motions that are, on average, higher than the medilues generated by events of the same magnitude)
b) the seismic waves travel over a similar patmfreource to site; and ¢) homogeneity of site soil
conditions (only present if the median ground mo&stimates for those soil conditions are biaseatien

! To avoid any possible misunderstanding we empéasize that this study is not concerned with thelaiity, or
coherence, at a point in time of ground motion algmt closely space sites but rather investigatesorrelation of
peak values of oscillator response (or of the gdomotion) observed over the entire duration ofshaking.



prediction equation). Modern ground motion attéimmaequations implicitly recognize the first cause
dependency via a specific inter-event error teras follows:

lnYi‘j= lnYl’] +T]l-T+8i’]'O' (1)

WhereY;; is the ground motion parameter of interest (&gT.)), InYH is the median value of the log

of Y predicted by the attenuation equation atjsite the magnitude-distance pair of earthquia&ed
local site conditions;; is the aforementioned inter-event standard noerral termg;; is the site-to-site
intra-event standard normal error term, arahdrt are the corresponding standard deviations ofwie t
error terms, or “residuals.”

An alternative formulation for Equation 1, whichsveommon in older prediction equations, is given by

InY,, =InY, ; + ¢ 2

] 1]

where £ ; is a random variable representing both the intereand intra-event variation at gittom
earthquake. By comparing Equations 1 and 2, it is can be ¢Parket al., 2007) thatd must equal
NJo? +r? for the variances of the two equations to be ecura that

~ 7y, + 0€; |

&, = _— (3)

o

In the context of assessing site-to-site correatibground motion IMs, it is convenient to use thedel
in Equation 2 for at least three reasons: a) tisenew only one residual term for each observatiary, ;
and g are provided by ground motion prediction equati@mlY;; is observed, s@, ; can be computed

directly); b) the residual term is easy to compthe values ofy, i=1,... N, for all theN earthquakes and
the frequency-dependent valuesra@tre usually not included by the developers of gdomnotion
prediction equations in their publications); andEguation 2 is also the form commonly used in
probabilistic seismic hazard analysis (PSHA) corapptograms, so spatial correlation models in this
format can be more easily incorporated into exjstiaftware.

Example observed; ; residuals from the 1999 Chi-Chi, Taiwan, earthguate shown in Figure 1; these
residuals, whose value is indicated by the colatesenclude both the inter- and intra-event eteoms.
T

Figure 1. Observed attenuation residuals from the 1999 Chj-Gliwan, earthquake



The second source of correlation, namely the catioel between the two random variabdgsande;  at
two different siteg andk, has not yet been fully investigated. Spatial depace can be observed in
Figure 1, by noting that residuals at nearby lacetitake similar values.

This intra-event site-to-site correlation, whichoiscourse not addressed in attenuation relatiqsstar
single sites, is crucial for the spatially distttiba applications mentioned above. The limitedaegdeon
this topic to date indicates that the correlatibmpeak ground acceleration or velocity values deses
with increasing spacing between two sites. Thigetation can be estimated by computing empirical
correlation coefficients for;; values at a site separation distamcgplus or minus some tolerance).
Because the, value is fixed for eacH earthquake, it is effectively a constant when eiogi correlation
coefficients are estimated from a single earthgu@kes, correlation coefficients obtained frefvalues

or &, values will be identical, but these correlatioeffigients only represent the correlation in the

values. To obtain correlation coefficients for thg values, one must add the effect of theandom

variable, which is perfectly correlated at all distes but cannot be detected from the previousreapi
correlation coefficients. The total correlationan values is thus

(4)

ol =7 L0
g

where p(h)=p€i“’€ij2(h) is the empirical correlation coefficient calculhtéor intra-events;; values
separated by a distanbe and p(h) =Ps ., .2(h) is the correlation coefficient for the totdl; values

defined in Equation 3. Note that for very closesifi.e.,h - 0) the correlationp(h) of IMs, of course,

tends toward one, whereas for very distant sites, i— o) it is simply given by the ratio of the inter-
term-variance to the total variance, as expectbd.variance of the difference of the same IM giaati
two sitesk andl, separated by a distanicés simply

VAR[X, = X,] =202 (- p(h) (5)

Some researchers (e.g., Boateal., 2003; Kawakami and Mogi; 2003; Wang and Tak&ff)5; Jeon
and O’Rourke, 2005), have shown that the corralabetween residuals of horizontal Peak Ground
Acceleration, PGA, or velocity, PGV, at two sitesctkase with increasing site spacing. Their models,
however, do not agree on the amount of correlaiod on how fast the correlation dies down with
distance. Also the site-to-site correlation of otigeound motion parameters, such as elastic spectra
accelerationS,(T) at a periodT, that are better predictors of structural respahsen PGA and PGV
received to date only limited attention (Goda anoh¢l 2008). Furthermore, these models all have
shortcomings with respect to the proposed apptinatias will be discussed below.

This project is an attempt to fill this researclpga@his study explores the site-to-site correlatain
ground motion parameters in more depth. It is irtgpd to emphasize here that the correlation treat w
consider is between the intra-event ground motesiduals at different sites from the same earthguak
namely thegj values generated by evardt different siteg,with j=1,..N . The residuals are obtained by
removing the median ground motion predicted forghe by a selected attenuation equation. We work
with the residuals rather than with the absoluteesof the ground motion parameters in order foone

the effects of the local soil conditions that, eottiee, would obscure the ground motion parameter
correlation structure.



Because residuals of ground motion parameters gttkat different sites by the same event are well
modeled by a multivariate Gaussian distributior, #patial dependence of a pair of parameters at two
sites (e.g.Si(Ty) at the first site an&,(T,) at the second site) is fully characterized by ¢berelation
coefficient. In particular, we consider models ¢orrelation as a function of the a) intensity paegers
(i.e., peak values and spectral quantities); b@rdation of the recordings (e.g., fault-normal daalt-
parallel components versus randomly oriented compi®); and c) definition of the intensity paramgter
(e.g., arbitrary horizontal component versus thengetric mean of the two horizontal components). We
also test whether the correlation depends on aferacteristics of the event and site (e.g., thgnmade

of the event, the distance of the sites from thesative rupture, and Somervilge al., 1997, directivity
parameter) and on the relationship that is selgct@dedict the median motion at each site.

As described in the next section, we derived thetsisite intra-event correlation structure usbugh

real seismograms from well-recorded past earthquala simulated recordings from hypothetical
events. Ildentification of some of the more subpatisl dependence properties requires a very large
number of data points to keep the effect from beimgsked by noise due to limited sample sizes.
Recorded ground motion libraries will be critical fdeveloping the basic models, but simulated gidoun
motion fields will be used to model more subtlesef§ which may require many thousands of data goint
to identify. While the simulations cannot complgtetplace the studies using recorded data, theybraay
useful for refining correlation models.

The results of the study based on real recordinggpeesented in the companion report from Stanford
University (Jayaram and Baker, 2008Bction 2 of this report presents the results of the stutlgmatial
correlation based on synthetic accelerograms.

The two applications of these models for site-te-giorrelation of ground motion parameters newly
derived in this study are:

1) Computation of the mean rate of occurrence of gifiepairs of ground motion parameters at two
different sites using a modification of the recgititroduced vector-valued Probabilistic Seismic
Hazard Analysis (VPSHA) and application to a srpalitfolio of structures;3ection 3)

2) Evaluation of the effects of ground motion parameterelation on loss estimates of portfolios of
properties with different spacing patterrSedtion 4)

12 Relevance of this study for seismic risk mitigation

The relevance of this study to reducing losses fearthquakes in the U.S. is direct and encompasses
several different aspects. First and foremost wosk provides a site-to-site ground motion paramete
correlation structure that is consistent with relaogs from historical earthquakes. This is the ialuc
building block of seismic risk analyses of multbperty portfolios or spatially distributed systeras,
explained below. Until now the overwhelming maiprof such seismic risk analyses are performed
either considering the ground motion variability #ach earthquake scenario but neglecting thesite-
site ground motion correlation, or by ignoring gndumotion variability altogether and assuming media
ground motion everywhere in the affected regionothBapproaches, and more so the latter, lead to
unconservative risk estimates by failing to predicge consequences that can only be caused bgrlarg
than expected ground motions for spatially exteraleés. These conditions can only be captured when
the appropriate site-to-site ground motion coriefestructure is adopted.

In addition to modeling ground motion correlatiome show its use in two distinct seismic risk
assessment applications that can be used for mglergtanding, communication, and, eventually,
mitigation.

In the first application, the joint hazard at mplki sites is computed by modifying the VPSHA tdwtt



has been recently introduced by one of the PI'shid study (see, among others, Bazzurro, 1998;
Bazzurro and Cornell, 2002; Luebal., 2005a and 2005b) for estimating the joint hazdravo or more
ground motion parameters at the same site. Thisapplication demonstrates the potential of VPSKA a
a tool for seismic risk analyses of spatially exlieth systems. The product of this research could be
adapted as an interactive tool on the USGS wetistewould enable a user to input the coordindtes,
example, of two building sites, specify the fundataéperiod of vibration along one of the principaks

of the two buildings (i.e.Tz; and Tg,), and obtain plots and tables with joint ratesersteedance of
different pairs of values d&(Tg;) andSy(Tg;). The site could also provide &l|(Tg;) andSy(Tg,) pairs
whose joint exceedance is equal to some targeteyauch as 10% in 50 years. With the target
exceedance rate and a pairSyfTs;) andS,(Tg,) values taken from the output, the user could atdofor

a plot of the disaggregated magnitude and distgades of the scenarios that most contribute to the
exceedance of those values at the site. SucH adolnl be very valuable for computing probabitatly
sound estimates of the damage and losses thaottielip of the two buildings may suffer.

In the second application we show how importaris ifor the accuracy of portfolio loss estimates to
properly model the ground motion spatial correlatioFigure 2 shows some results for a hypothetical
portfolio of 1,200 identical woodframe houses wdtD0,000 each located on a regular rectanguldr gri
with 500m spacing between consecutive sites (FigajeThe curves in Figure 2b show the mean annual
rate of exceedance of different level of lossesthis portfolio computed first by neglecting ground
motion spatial correlation (lower red curve) anertliby modeling it according to Booeeal. (2003). The
difference is most significant for the rare losgdete that a much larger difference in loss estmas
expected for portfolios with a limited humber obperties located in a smaller geographical areas |
clear from this simple example that modeling grommetion spatial correlation is crucial for accurate
assessment of future seismic risk. The effectspatial correlation of ground motion intensities on
portfolio losses is investigated in this reportngsthe correlation structure developed in this wtadher
than that of Booret al. mentioned above.
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Figure 2: (b) Mean rate of exceedance curves for differerellef losses for a hypothetical portfolio of 1,200
residential wood frame houses located in Southatifd@nia (see regular grid shown as a rectanglanel a).




13 Objectives
There are two main objectives of the proposed rebestudy:

* Objective 1: Development of a correlation structure for grounation parameters generated by
the same event at different sites. Previous stugfispatial dependence of ground motions report
widely varying results and are also limited to P&#d PGV. The statistical study proposed here
covers a greater range of ground motion parametars, also considers more sophisticated
models that include the effects of distance from fdwlt rupture, magnitude of the event, and
directivity parameter of the site, if such effeats supported by the data. The correlation models
are first developed using recorded ground motibosthe more complex aspects of the models
are investigated with the aid of large datasetsifgpound motion simulations.

» Objective 2: Integration of the correlation models developecehinto two different applications:
a) computation of the joint probabilistic hazardgrbund motion parameters at two different
sites via a modification of the VPSHA framework; e€3timation of the earthquake-induced
losses to spatially distributed portfolios of masiyuctures while accounting for site-to-site
ground motion correlation.



2 SPATIAL CORRELATION OF GROUND MOTION INTENSITIES IN
SIMULATED RANDOM FIELDS

This study utilizes simulated ground motions pragtudy Drs. Brad Aagaard and Robert Graves
(Aagaard et al., 2008b, 2008a) to study the spediaklation between ground motion intensitiesajam
and Baker (2008b) used geostatistical tools to tifyaand establish spatial correlations using gebun
motions recordings from past earthquakes. They idksatified various factors influencing the exterft
the spatial correlation, and developed a prediatieelel that can be used to select appropriate latime
estimates for use in risk assessment problems.eAfbitorded ground motions are a great asset for
estimating the extent of correlation between grenmudion intensities at two sites, they do not sgfior
investigating the validity of assumptions such esosid-order stationarity (i.e., dependence of tation

on just the separation between sites, and not enathual location of the sites) and isotropy (i.e.,
invariance of correlation with the orientation betsites) which are commonly used in the developmen
of spatial correlation models. This is on accouhthe scarcity of ground motion recordings for any
particular earthquake.

This limitation is overcome when using synthetiowgrd motion random fields. The current study wgiz
ground motions simulated at 35,547 locations basedsource models of the 1989 Loma Prieta
earthquake and the 1906 San Francisco earthquakesrffying these commonly-used assumptions.

21 Modeling correlations using semivariograms

Ground-motion models that predict intensities atiraividual sitei due to an earthquaketake the
following form of Equation 1 in Section 1, whichrespeated here for convenience:

InY;; = InY,, +n,7+¢g;0 (6)

whereYij denotes the ground-motion parameter of interegt,&(T.), the spectral acceleration at period

Ty); \_(ij denotes the predicted (by the ground-motion modedilian ground-motion intensity (which
depends on parameters such as magnitude, distzeroed and local site conditions¥; and/; denote,

respectively, the normalized intra-event and ieteznt residuals, which are both standard normalaian
variables. Finallyg andz are the corresponding standard deviations ofwletypes of residuals. These
standard deviations are estimated as part of thiengrmotion prediction model and are a functiomhef
response period of interest, and in some modets alfunction of the earthquake magnitude and the

distance of the site from the rupture. During arthepiake, the inter-event residug;() computed at any
particular period is a constant across all thessite

Jayaram and Baker (2008a) showed that a vector patiadly-distributed intra-event residuals

82(81,82,...,8d) follows a multivariate normal distribution. Henctie distribution of & is fully
defined by its mean and covariance of the residu@ilee mean ofg, equals zero, while its variance is

provided by the ground-motion model. The correfatietweens, and &; is, however, unknown and

needs to be estimated. The current work uses agjesial tools to empirically estimate these
correlations using the simulated ground motion data. These tools are described briefly in tbidien;

2 We dropped the subscripthat refers to thg" earthquake to simplify the notation.



a detailed discussion can be found in, for examptemvaerts (1997), Deutsch and Journel (1998) mand i
Jayaram and Baker (2008b).

Let £ denote the set of inter-event residuals distrithateer space. The semivariogram&fs a measure
of the dissimilarity between the residuals andseful in computing the spatial correlation betwées
residuals. While working with correlations, it onvenient to work with normalized residuals as
compared to€’s since normalized residuals are homoscedast, (have a constant variance). As

mentioned above, normalized residuaks X are obtained by dividing the’s by the appropriate standard

deviations obtained from the ground-motion modék §emivariogram of the random function (a random
function is a collection of spatially-distributeaindom variables) o, s is defined as follows:

N(h)

oy =5 (h) N LE T ] ()

where jp(h)denotes the experimental (i.e., empirical) sembgram of the normalized residuals;
(u,,u, +h) denotes the location of a pair of sites separbyeld andN(h) is the number of such pairs.

When empirically estimatedy(h) only provides semivariogram values at discrete eskfh, and hence,

a function (e.g., an exponential function) is ubuditted to the discrete values to obtain the
semivariogram values for continuobisFor instance, an exponential semivariogram takegollowing
form:

y(h)=a[1-exp(- 3 b)] (8)

wherea denotes thesill” of the semivariogram (which equals the varian€é¢he normalized residuals
(=1)) andb denotes therange’ of the semivariogram (which equals the separatimtanceh at which
y(h) equals 0.95a). It is to be noted that Equatioms 8 are implicitly based on the assumptions of

stationarity and isotropy. This issue is addressedetail in Goovaerts (1997), Deutsch and Journel
(1998).

Park et al. (2007) and Jayaram and Baker (2008b)vesth that correlation coefficients and,
therefore, the semivariogram of intra-event redsl{&quation 7) can be directly obtained usingltota
residuals rather than using intra-event residualich is advantageous since the empirical datectljre
provides the total residuals). L&t denote the total residual normalized by the stahdaviation of the
intra-event residual (as provided by the groundiomoiodel). It can be easily shown that:

N(h)

y()—MZ[e; fanl o
1 N (h) _ . 2
- ZN(h) ; I:E _gua+h:|

It can be theoretically shown that the spatial @ation function @(h)) for intra-event residuals
can be computed from the semivariogram functiofobews:

p(h) =1-jy(h) (10)



Hence, it can be seen that the correlations arg@latety defined by the semivariogram, which in
turn, is a function only of the range (The silkisown to equal 1, the variance of the normalizesidieals
for which the semivariogram is constructed.) Mwexp note from equations 8 and 10 that a largeggan

implies a smaller rate of increase jufh) with h, and subsequently, a smaller rate of decay oktaiion
with separation distance.

In the current study, ranges of semivariogramsesiduals are estimated using simulated ground
motions. The residuals are computed using the groootion model of Boore and Atkinson (2007).
Further, the simulated data sets are used tohestgsumptions of second-order stationarity artdoisy,
used in the development of the spatial correlatioalel.

22 Data sets used
In the current spatial correlation study, we usmd timulated ground-motion data sets:

« the 1989 Loma Prieta earthquake data set of AagaaddGraves (described in Aagaard et al.,
2008b);

e the 1906 San Francisco earthquake Song-Mod dbatd Aagaard (Aagaard et al., 2008a);

e the 1906 San Francisco earthquake RandomHypoO6datf Aagaard (Aagaard et al., 2008a);
and

» the 1906 San Francisco earthquake RandomHypoGsettd Aagaard (Aagaard et al., 2008a).

The 1989 Loma Prieta simulations are based on #rezZa (1991) and the Wald et al. (1991) source
models. The 1906 San Francisco earthquake Songditadations are based on the Song et al. (2008)
source model with modified rise times to match Bwatwright and Bundock (2008) intensities. The
1906 San Francisco earthquake RandomHypoO6 simngare similar to the Song-Mod simulations,
except that the slip distribution is randomizede RandomHypoC simulations are based on a modified
epicenter (in Bodega Bay rather than a few kilomsetéfshore San Francisco, as in the other twosjase
and a randomized slip distribution. Ground motians available at 35,547 sites for the simulatioins
Aagaard and at 40,000 sites for those from Grasiesllations. Sites on softer soil conditions withy
<500m/s, however, are excluded from the computatidae to limitations in capturing nonlinear soil
behavior in the simulations. Also, current limitats in the simulation procedure allowed us to
investigate only the spatial correlation of spdcttecelerations at periods greater than or equaisto
SimulatedSy(T)’s values forT<2s were considered unreliable.

23 Results of the Spatial Correlation Study
2.3.1 The 1989 Loma Prieta earthquake simulations by Aagaard

The total residualg;’s, were computed from the fault-normal compondatsS,(T) with T=2s, 5s, 7.5s,
and 10s using the ground motion prediction equatioBoore and Atkinson (2008). The semivariograms
of the residuals at discrete values of the semaratistanceh, were computed and exponential models
were fitted using the visual approach describe®é@utsch and Journel (1998) and Jayaram and Baker
(2008b). Special attention was paid to obtaining brest fit for values at short separation distances
Capturing the effects of the correlation at neddmations has a much larger influence on the ground
motions at a given site due to the so-called “slvigl effect” (Goovaerts, 1997). Jayaram and Baker
(2008b) discuss the reasons why this approach,hwhiacimizes the error at short separation distances
provides semivariograms that are superior for pracapplications to those fitted using the metlodd
least squares, which minimizes the error over a&wéthge of separation distances.
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Figure 3: Semivariograms of residuals computed $i@)’s from the fault normal component of the 1989 Loma
Prieta simulations: Residuals f8(T) at (a)T=2s; (b)T=5s; (c)T=7.5s; and (dJ=10s.

The semivariograms obtained using the residualshef fault-normal components from the
simulated data set are shown in Figure 3 for fadgillator periods while the corresponding ranges ar
plotted inFigure 4. It can be seen that the values of the range tarcefore, the amount of spatial
correlation increases with oscillator period. Tinénd is to be expected given that the coherentwydsm
the period components of the ground motion increaséh period (Zerva and Zerva, 2002; Der
Kiureghian, 1996). Note that the ranges obtain@dnfthis simulated 1989 Loma Prieta data set are
slightly larger than those from recorded ground iomst computed by Jayaram and Baker (2008b)
(Figure 4). There may be several reasons for the largatisdpcorrelation of the simulated ground



motions compared to that of the recorded ones aotk mesearch is needed to uncover them all.
However, as mentioned earlier, the primary reasom$ing simulated ground-motion sets in this stisdy
to utilize their large number of available timethites to investigate the assumptions of isotropg a
second-order stationarity of ground motion intéasitThe testing of these assumptions can be dasut
irrespective of the extent of correlations observed
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Figure4: Ranges of semivariograms at different periods:idReds computed using (a) Brad Aagaard 1989 Loma
Prieta simulations and (b) recorded ground mot{dagaram and Baker, 2008b)

Effect of ground-motion component orientation onga

In order to test if the orientation of componenttb& ground motion used has an influence on the
estimates of spatial correlation, additional semdgrams of residuals were estimated using thet faul
parallel, north-south and east-west components hef simulated data set. The ranges of these
semivariograms are presented in Figure 5. Theerastjimates are essentially identical Te2s and do
not show a significant variation on the componeedu®r longer oscillator periods. Hence, most & th
following analyses in this section are based onféhdt normal components of the simulated ground
motions.
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Figure 5: Ranges of semivariograms at different periods. ideats are computed using Aagaard’'s Loma Prieta
ground motions at different orientations
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Testing the assumption of isotropy using directiGemivariograms

Directional semivariograms of residuals (Deutsctl dournel, 1998, and Jayaram and Baker, 2008b) are
obtained as shown in Equation 9 except that thienatts are obtained using only pairs(qa,zufh)

such that the azimuth of the vectoris identical for all the pairs utilized. In thisugy we consider
azimuth angles of ‘045 and 90 If anisotropy is present in the data, the semiwadams along different

pre-specified azimuths will differ from one anotld from the omni-directional semivariogram (itke
semivariogram obtained using all pairs of pointsspective of the azimuth).

Figure 6a and Figure 6b compare the omni-directieamivariogram with the semivariograms obtained

considering azimuths of ,045 and 90 for T=2s andT=10s, respectively. All the semivariograms are

almost identical for separation distances belovkmQwhere capturing correlation is most importamigl

are reasonably close for separation distances bat@® km and 20km. As mentioned earlier, spatial
correlation of ground motion intensities betwedassseparated by more than 20 km need not be nibdele
with great accuracy on account of the shieldingaff Therefore, based on this data set, it can be
concluded that the correlations can be adequatelesented using an isotropic model.
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Figure 6: Semivariograms computed from components of diffeazimuth angles of the Aagaard 1989 Loma Prieta
simulation data set: Residuals for {&2s; (b) T=10s. The omni-directional semivariograms 1612s andT=10s
were also shown in Figure 3a and 3d, respectively.

Testing the assumption of second-order stationarity

A spatial random functio# is said to be second-order stationary if the ramdariableZ, andZz, (i.e.,

the random variables that represent the valu&saiflocationas andyv, respectively) have constant means
and second-order statistics (i.e., the covariatit&) depend only on the separation distance between
andv and not on the actual locations. In other wotks,covariance is the same between any two sites
that are at the same distance and direction ncemattich sites are chosen. The assumption of second
order stationarity is not only convenient while dimping correlation models since it allows the data
available over the entire region of interest topgmmled together but also simplifies considerably th
application of the models.



The assumption of second-order stationarity cawvesdfied by comparing semivariograms constructed
exclusively using residuals at sites belonging ifteent spatial domains. If the semivariograme ar
similar, it will imply that the actual spatial loman of the sites where the ground motion inteasitare
measured does not matter. In the current work,respatial domains are defined based on the distaince
the sites from the rupture: Domain 1 includes ditesveen 0-20km while Domains 2-7 consist of sites
between 20-40km, 40-60km, 60-80km, 80-120km, 120k&® and 160-200km of the rupture,
respectively. Note that, as with histograms, tHecti®n of the distance bins is somewhat arbitr&igry
narrow bins may provide results that are both Unhstdecause of scarcity of data and potentially
influenced by local effects (e.g., a cluster oésiwith large residuals). Conversely, very broat lohay
not detect any trend in the data, if there is éfexe, the width of the domains was selected judslipto
avoid both pitfalls above.

The 1989 Loma Prieta fault normal ground motions ased to computé& values at four different
periods, namely, 2s, 5s, 7.5s and 10s. Only relsduaites that belong to a particular spatial @ionare
then used to compute the semivariograms for thatisdpdomain. The ranges of these semivariograms
corresponding to the seven distance domains arertegp in Figure 7, along with the ranges
corresponding to the semivariogram obtained byipgdll the fault normal residuals together regesdl
of the distance from the rupture. It can be skanthe semivariograms computed using residuadges
at 20-160km of the rupture are closer to the sertgeam obtained using all fault normal residualant
those from bins that are closer and farther froefttult. Semivariograms corresponding to a distdoiice
farther than 160 km from the rupture show signiitbasmaller ranges, as do the semivariogramshier t
distance bin within 20 km of the rupture. The grdumotion values at sites farther than 160 km fthen
rupture are generally very small and, thereforepanting for the reduced correlations at thesecexgty
far-off sites may not be very critical. On the aany, it is important to study the smaller correlas
observed at near-fault locations. Intuitively, st ieasonable to expect small-scale variations doce
spatial correlation between ground motions at fiealt-sites. At sites farther than 20km, the srsalide
variations have less influence, thereby resultmiaiger ranges and, therefore, larger correlations
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Figure7: Ranges of semivariograms at different periods.ideeats are computed using Aagaard’s 1989 Loma
Prieta simulated ground motions at different disesnfrom the fault rupture.

Effect of directivity on spatial correlation

Ground-motions at near-fault sites are typicallfluenced by directivity effects, resulting in large
amplitude pulse-like ground motions in the forwditectivity region. Most ground-motion models,



however, do not explicitly capture this effect. Tdfere, the residuals in such cases may be more
correlated because of the additional predictiororerrat sites influenced by directivity that are not
captured in the ground motion prediction model. MWend to study here whether ground motions that
show directivity effects are spatially correlatedai dissimilar way from those that do not. BalZ0Q(7)
developed a technigue that uses wavelet analysiettify ground motions with pulses. Although radit

the pulses identified by this technique are duditectivity effects, this approach provides a remdde
data set for studying the potential impact of dikety.

The wavelet analysis procedure of Baker (2007) used to identify 434 pulses in the fault normal
components of 1989 Loma Prieta simulations (indialgn the wavelet analysis procedure also idegdifi
121 pulses in the fault-parallel direction, whiale aot utilized here). Residuals at four differpatiods
were computed based on these ground motions anga@grams of the residuals were developed. The
estimated ranges (Figure 8) of these semivariog@mssmaller than those estimated based on all the
fault normal residuals, but similar to those estgdabased on ground motions at all the sites tteat a
within 20 km from the rupture (Figure 7). For amgmarison, Figure 8 also shows the ranges obtained
using ground motions at all the sites that do reatehpulse-like ground motions, but are within 20 km
from the rupture (called near-fault non-pulse rdsan the legend). It is seen that the rangesraddan
this case are similar to the ranges obtained ysirges. This indicates that the effect of diretfivoes
not substantially alter the ranges of the semigmams. It is to be noted that the ranges basedean n
fault pulse-like and non-pulse-like ground motidreve been computed separately only for pedagogical
purposes. For all practical purposes (e.g., rislessment of building portfolios), the only inforimat
required are the ranges computed based on allfaeliiground motions (shown in Figure 7) unlesessit
where pulse-like ground motions will be present baraccurately predicted.

Finally, it also to be noted that the pulse-likewrd motions simulated for the Loma Prieta eartkgua
are concentrated in a fairly small region. As aulteghe estimates of spatial correlation of pulke-
ground motion may not be very robust. The resuttsioed from the 1906 San Francisco earthquake
simulations described later will not have this tision.
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Figure 8: Ranges computed using pulse-like and non-pulsenldes fault 1989 Loma Prieta ground motions.
2.3.2 The 1989 Loma Prieta earthquake simulations by Graves

All the tests carried out on the Aagaard’'s simoladi discussed in Subsection 2.3.1 were repeatad usi
this data set by Graves. Again, we used as basetba fault-normal components. Figure 9 and Figure
10 show the semivariograms estimated using the raldiomputed for PGA, and f&(T) atT equal to



0.5s, 1.0s, 2.0s, 5.0s, 7.5s, and 10.0s, whiler€&i@a displays the corresponding ranges. The raages
the shorter periods are close to the values olitaméhe previous subsection, but the values ofdhg-
period ranges are slightly larger than previouslgayved. Investigating the reasons behind thigiffce

is beyond the scope of this study. However, we @dpée that this higher correlation may be partlg ¢

a procedure called “bulldozing” adopted by Gravdsciv converts the 3D surface of the earth in to a
plane surface. This procedure may introduce aufditi systematic errors in the generated ground
motions, which would then result in an increaséhimrange of the semivariograms. Figure 12 shows th
ranges of semivariograms obtained from the ressdofathe fault-normal (also shown in Figure 11)lfa
parallel, north-south, and east-west components.with the previous data set, it can be seen tieat t
ranges are reasonably close, irrespective of tlmingk motion component used. Therefore, the
subsequent analyses are based on only the fanfiahoesiduals. The assumption of isotropy was iestif
further by comparing the directional (for selectedimuth angles) and the omni-directional
semivariograms of the residuals computed TaR.0s andT=10.0s (Figure 13). The directional
semivariograms and the omni-directional semivagdomy match reasonably well at short separation
distance, thereby indicating that isotropy is soe@ble assumption.
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Figure9: Semivariograms of residuals computed using the faarimal component of the simulated 1989 Loma
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T=2.0s
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Figure 13: Semivariograms computed from components of diffee@imuth angles of the 1989 Loma Prieta
simulation data set by Graves: ResidualsJ¢rF) at (a)T=2s; (b)T=10s. The omni-directional semivariograms for
T=2s andl=10s were also shown in Figure 9c and Fidide, respectively.

The test of second-order stationarity of the serodgaams is limited in this case to three distance
domains: sites between 0-20km, 20-40km, and 40-6@&m the rupture. Sites beyond 60 km were few
and scattered and, hence, not considered in tliy.sfihe ranges of semivariograms corresponding to
these three domains are shown in Figure 14 alotigthe semivariograms from all the sites. Constften
with the results from the previous data set, grooudions at sites within 20 km of the rupture sheow
lower spatial correlation than those at fartheessifThe ranges for sites within 20km at longerquks;
however, are significantly larger than those fréwa tlata set by Aagaard. The ranges for sites bet2@e
and 40 km of the rupture imply a larger correlattban that from the previous data set particulatly
long periods. This increase, however, seems tougetd the local effects mentioned before that are
generated by a cluster of similar-valued residiralthis distance domain. At shorter periods, howgeve
this local effect is not found, and the rangescamparable to those obtained using all the faultrad
The ranges in the 40-60km domain arelasi to those obtained using all fault-normal
residuals. Therefore, this limited analysis showeasonable agreement with the conclusions derived

residuals.

using Aagaard’s simulations for the same event.
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Figure 14: Ranges of semivariograms at different periods.idReds are computed using Graves’ 1989 Loma Prieta
simulated ground motions at different distancemfthe fault rupture.

Finally, to verify the effects of directivity on afial correlation of ground motion intensities, the
same wavelet analysis technique of Baker (200/)tifiled 1,636 pulses in the fault normal components
of this simulated data set (incidentally, 499 fandtallel pulses were also extracted). Clearly, theh
larger number of pulses observed in Graves’ sinariatcompared to that in Aagaard’'s simulations is
indicative of some profound differences between tthe techniques. As in the previous section, the
pulse-like records are fairly concentrated in aomararea and, hence, no attempt was made to quantif
their spatial correlation. In any case, the moattically-useful near-fault range estimate is tatained
using all recordings within about 20 km from theture discussed above.

2.3.3 The 1906 San Francisco earthquake simulations. Song-Mod dataset

In this section, all the tests performed using 1889 Loma Prieta simulations are repeated using the
Song-Mod data set of the 1906 San Francisco eakieqoy Aagaard. The epicenter of the earthquake is
assumed to be a few kilometers offshore from Samdisco (Long: 122.557; Lat: 37.75). Again, the
base case considers the fault-normal componengésamalyses are based on residual$fQr) atT=2.0s,
T=5.0s,T=7.5s, andl=10.0s computed using the prediction equation arB@nd Atkinson (2008). The
semivariograms of the residuals and the correspgndinges are shown in Figure 15 and Figure 16,
respectively. These figures noticeably shows thatdstimates of the ranges are larger than those fr
both the simulated Loma Prieta data set and redodd¢a sets for the historical events considered in
Jayaram and Baker (2008b). Again, it is not unetqueto observe range estimates larger than thogse fr
real recordings since limitations in simulationhteigues may introduce systematic errors in the rgulou
motions that result in artificially higher spatcdrrelation.
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Figure 17 compares the ranges of the semivariogdrtise residuals computed using the fault-normal,
fault-parallel, north-south, and east-west comptehthe simulations. As seen in the previousigegct
the ranges do not show a strong dependence onrtumdymotion component used and, therefore,
subsequent analyses in this section are basediptherfault normal component of the ground motion.

The assumption of isotropy was also verified uglirgctional semivariograms of residuals computed at
three different azimuths (045 and 90. These directional semivariograms and the ommietional
semivariogram are shown in Figure 18. As seen fittve Loma Prieta data set, the directional
semivariograms obtained are all reasonably sintibathe omni-directional semivariogram, thereby
corroborating the isotropic assumption.
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Figure 17: Ranges of semivariograms of residuals computedjusimponents with different orientations from the
1906 San Francisco earthquake Song-Mod ground mdtta set.
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Figure 18: Semivariograms computed from components with défieazimuth angles of the 1906 San Francisco
earthquake Song-Mod simulation data set by Aagdediduals foS,(T) at (a)T=2s; (b)T=10s. The omni-
directional semivariograms fd@=2s andT=10s were also shown in Figure 15a and Figure f&sghectively.

As before, the assumption of second-order statiynasas verified by constructing semivariograms of
residuals at sites belonging to different spatiamdins. The test of second-order stationarity @f th
semivariograms considers four distance domainss sietween 0-10km, 10-30km, 30-50km and farther
than 50km from the rupture. The semivariogram rarigethese cases, which are shown in Figure ¥9, ar
fairly close to those obtained assuming secondrc@i@gionarity (i.e., using all the fault normasiduals).

As before, the estimates of the ranges of semigeains obtained using residuals at sites very ¢see
rupture are, again, smaller than the average rahyé#ss simulated data set, however, the diffeesnare
less significant than those observed in the prevaases.
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Figure 19: Ranges of semivariograms at different periods.idRe¢s are computed using the Song-Mod 1906 San

Francisco earthquake ground motions at differestadices from the fault rupture.



Finally, to verify the effects of directivity, theavelet analysis technique of Baker (2007) idesdif2,577
pulse-like ground motions in the fault normal comgot of the simulations (and, although not useé her
also 2,315 fault-parallel pulses). The estimatethefranges of semivariograms based on these ground
motion residuals are shown in Figure 20. Also ghdwthe figures are the ranges of semivariograms
obtained using all the fault-normal residuals, téveges estimated using residuals at sites witholsep

but within 10 km from the rupture, and the rangesiputed using residuals at all sites within 10 Km o
the rupture (which are also shown in Figure 19¢alh be seen that the ranges obtained using pkése-|
ground motions are similar to those estimated usiag-pulse-like ground motions, as seen in the
previous section.
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Figure 20: Ranges computed using pulse-like and non-pulsenlider fault Song-Mod ground motions for the 1906
San Francisco earthquake.

Incidentally, note that the number of fault padafialses extracted is comparable to the numbeault f
normal pulses found. This is quite unusual, andoiscommon in recorded ground motions. The source
inversion model of Song et al. (2008), however|udes 100km of super-shear rupture just north ef th
hypocenter. Aagaard and Heaton (2004) analyzed-penigd near-source ground motions from
simulations of M7.4 events on a strike-slip fauithasuper-shear ruptures and concluded that thersup
shear ruptures show significant fault-parallel motbefore fault-normal motion. Further, they observ
that in these cases the maximum horizontal displaogs and velocities tend to rotate from the fault
normal direction to the fault parallel orientatidrnerefore, it is reasonable that the simulaticosipce a
comparable number of fault-normal and fault-patglidse-like ground motion time histories.

2.3.4 The 1906 San Francisco earthquake simulations: RandomHypo06 and RandomHypoC datasets

The RandomHypo06 and the RandomHypoC data setsirailar to the Song-Mod data set, except that
they are both based on different slip distributjosisd the RandomHypoC data set is also based on a
different hypocenter (in Bodega Bay, which is lechin the northern portion of the 1906 rupture)e Th
estimated ranges of the semivariograms are showhigare 2hnd Figure 22for the two sets of
simulations. Clearly, the ranges estimated usiegahwo data sets are much larger than those ¢stima
using the other two data sets described previol$li is an indication that the simulations fordbewo



scenarios have produced much more correlationseagtvground motions than seen in the recorded
ground motions. One possible reason for these largeelations is the use of a more uniform rupture
speed in the RandomHypo06 and the RandomHypoC afiong, as compared to that in the Song-Mod
simulations. As mentioned previously, however, thain motivation behind using simulated ground
motions is to verify the assumptions used in depiakp the correlation models, rather than to dethe
extent of the correlations between ground motiokkence, these data sets are used for verifying the
assumption of second-order stationarity despitdaifgee ranges seen.
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Figure 21: Ranges of semivariograms of residuals computedjubim RandomHypo06 simulations of the 1906 San
Francisco earthquake.
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Figure 22: Ranges of semivariograms of residuals computedjubim RandomHypoC simulations of the 1906 San
Francisco earthquake.



The ranges of the semivariograms of residuals cteapusing the fault-normal, fault-parallel, north-
south and east-west components of these simulateshd motion data sets are shown in Figure 23 and
Figure 24. As seen in the previous sections, thgas do not show a strong dependence on the ground-
motion component used and, therefore, any furthalyais in this section is based on the fault ndrma
component of the ground motions.
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Figure 23: Ranges of semivariograms at different periods. dReds are computed using RandomHypo06 ground
motions at different orientations
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Figure 24: Ranges of semivariograms at different periods.idRe¢s are computed using RandomHypoC ground
motions at different orientations



As before, semivariograms were computed using wasddat sites belonging to the following four
distance domains: sites between 0-10km, 10-30knp08® and farther than 50km from the rupture.

The corresponding estimates of the ranges alongetfiar the semivariograms computed all the fault
normal components regardless of their distance frarupture are plotted for the two data setsgufe

25 and Figure 26. In both cases, the assumptiseadnd-order stationarity seems to be reasonaitity v
(barring a few outliers) except at sites that areiwv 10km of the rupture, whose spatial correlatis
lower. This is consistent with observations frora tither simulated ground-motion datasets.
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Figure 25: Ranges of semivariograms at different periods. dRed$ are computed using RandomHypo06 ground
motions at different orientations
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Figure 26: Ranges of semivariograms at different periods. dReds are computed using RandomHypoC ground
motions at different orientations

Finally, as before, the wavelet analysis proceddifdaker (2007) identified 2,649 and 2,698 pulsethe
fault normal components of the ground motions frite RandomHypo06 and the RandomHypoC



datasets, respectively. Semivariograms were caedpusing these pulse-like ground motions, and the
ranges of these semivariograms are shown in Figdrand Figure 28. Also these figures include the
range estimates computed using near-fault (i.4.0kn) non-pulse-like ground motions and using all
near-fault ground motions. Unlike in the previalaa sets, the ranges computed based on pulsadike
non-pulse-like ground motions from the same spatiahain (near-fault) are drastically different. The
source of these differences is not clear, but, estioned previously, only the average ranges catied|
based on all the near-fault ground motions ar¢hiatpoint in time, useful in practice. Howeveresk
near-fault ground motion ranges show a similardrenthose seen from other simulated datasetshigd t
is comforting from the practical viewpoint of desping standardized correlation models.
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Figure 27: Ranges computed using pulse-like and non-pulsenlder fault RandomHypo06 ground motions
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3 VECTOR PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR A SMALL
PORTFOLIO OF STRUCTURES

In this section, we illustrate how site-to-site gnd motion parameter correlation affects the joint
performance of a small portfolio of key structuoésnterest to a stakeholder (i.e., a governmeenay,

a corporation, or an insurance company). The ekierie large portfolios follows in Section 4. Pd#si
measures of performance include the expected ldssdise entire portfolio, or the probability thedme
fraction of the structures in the portfolio will ltapse, given the occurrence of a specific evernwitrin
some period of time. For example, a stakeholder baainterested in the probability that his/her @niyn
and backup facilities both fail in the same eventin the probability that total repair costs foettwo
facilities will exceed $10M (regardless of how thes is partitioned between the facilities). Estesaof
losses and collapse probabilities are essentiahwiaking decisions to mitigate future seismic risk.

The first step in performing these loss analysds &ssess the joiptrobability of occurrence of multiple
ground motion parameters at the building sitebak been shown that for most structures a meatingfu
link can be established between the intensity gifomnd motion parameter (e.g., spectral acceleradip

at the fundamental period of the structurg,and structural response. Therefore, it is exélg useful to
have a tool that computes the annual rate of oenaer of any pairs of ground motion parameter vadties
the building sites. If the sites are very far freach other (e.g., 100km) they can be treated sepases
customarily done via Probabilistic Seismic Hazambksis (PSHA). However, sites that are relatively
close to each other (e.g., 10km apart or lesshduah earthquake are affected by ground motion &hos
peak intensity parameters are correlated (seed®e2tiand companion report Bayaram and Baker,

2008H.

When the number of ground motion parameters andidinaber of sites is small (say, one parameter per
site for up to five sites) then the Vector-value8HA (VPSHA) tool (Bazzurro, 1998; Bazzurro and
Cornell, 2002) originally developed for assessiigtj hazard of multiple ground motion parametera at
single site is an appropriate tool for this objeetiOnly some relatively minor adjustments to thigipal
methodology are needed, as explained below. A withemore parameters and more sites is, however,
too computational intensive to be treated withie MPSHA framework with the current computer
resources and it is better addressed using theeMbatlo approach described in the next sectionw Ho
VPSHA can be used for computing the joint hazamaltiple sites is discussed in the next subsection

31 Methodology

The VPSHA approach implemented here is based otetfable assumption of the joint lognormality of
the correlated ground motion parameters (BakerJagdram, 2008) conditional on the characteristics o
the causative event. . Recall that the same astrmpas been exploited for essentially any ground
motion prediction equation in existence and proieegrthe distribution of different peak parametetrshe
same site (Jayaram and Baker, 2008a). The joinhNRedie Density, MRD (for definition and detailsese
Bazzurro and Cornell, 2002) or, alternatively argliealently, the Mean Annual Rate (MAR) of
occurrence of a pool of ground motion parametensbeacomputed with the knowledge of the following
input:

» Ste-specific seismic hazard curves for the ground motion parameters at the sites.
The vector of ground motion parameter is denotad heS, where the bold character indicates
that the quantity is a vector. In the applicatibiand, this vector could include, for example, the
horizontal spectral acceleration at a given pedbtvo sites or the spectral acceleration at two
different periods at two sites. The periods cowdeaspond to the first mode of vibration of each
structure. These two hazard curves can be obtaittedany standard PSHA code.



e The pair-wise correlation matrix of all the ground motion parameters).
In the companion report Jayaram and Baker (2008 fempirically derived the correlation
structure for spectral accelerations with the spem@d at two sites regardless of the component
orientation. The correlation matrix for spectrateleration at different periods at two sites or of
other ground motion parameters (e.g., Arias intghai two sites has not yet been developed but
it can be derived using the same approach as ard@yand Baker (2008b).

» Thedisaggregation results from scalar PSHA.
The joint distributions of all the basic variabl&s,used in the ground motion prediction equation
of choice (i.e.M, R, and all the other variables — such as the stifiauting, the directivity
parameters, the distance to the top of the co-seimupture, and dip angle, that are needed to
compute the level of ground motion for every eanttige rupture) at each site conditional on the
value of the selected ground motion parameter isstraightforward extension of the
disaggregation results (e.g., basedMrmnd R only) routinely available from standard scalar
PSHA codes. The necessary modifications are conalyt simple and involve only
disaggregation of the site hazard in terms of #ltil RVs beyond the magnitudd, the source-
to-site-distanceR, etc. as done in the past.

The input and the output of the VPSHA methodolodl be illustrated for an example of two sites in
San Francisco in the nest subsection.

Again, one of the distinct appealing qualitiestdétmethodology is that it can be written as addéone
post-processor routine of a standard PSHA code atleuracy of the results, however, could potédntial
be jeopardized by the selection of too wide bindnduthe discretization of the domain of each gebun
motion parameter (e.gv andR).

The adopted VPSHA methodology described below e successfully applied to compute the joint
hazard of multiple parameters at the same siteaizz@rroet al. (2008). We have modified it here to be
applicable to multiple sites.

To be concise but without losing generality, wespré the details of the procedure for the casérekt
sites: Site 1, Site 2, and Site 3. The parametechoice is a spectral acceleration at a given gerio
(perhaps different at different sites). This apphgavhich requires some basic matrix algebra, asabde

to a larger number of sites and can include angrogmound motion parameters (e.g., Peak Ground
Velocity, Peak Ground Acceleration, Arias Intensigic.) for which spatial correlation structure and
prediction equation are available. For simplichgre we will also treat the RVs representing treugd
motion parameter at each one of the three sites 8:;S»;Ss) as discrete rather than continuous
guantities.

Let us denote witls=[Sx1;S»;Si] the vector of RVs for which we seek to obtain jihiet hazard and with
MAR[ Su;S0;Si] = MARs1 s s3(81;82;83) the mean annual rate of three spectral accederagpiantities
S, Se, and Sz in the neighborhood of any combination of threeuesla;, a,, and as, respectively.
Strictly speaking, note th&,;S»;Siz represent the natural logarithm of the spectregélgecations but the
logarithm has been dropped here to avoid heavytinota MAR[S,1;S2;Si3] could denote, for example,
the MAR that spectral accelerations at the funddatemode of each building assume values in the
neighborhood of, say, 1.0g at each one of the thites. In an application, these spectral accéterat
values could be related to the onset of an impoamctural limit state (e.g., collapse) foundngsi
statistical analysis of the response of the stredtn many ground motion records.

Using simple probability theory and the theorentoddl probability, one can write the following:



MAR(S S, S, =AS. ;SIS | SIMARS ] (6)
where

¢ P[S | 32’ 3]_ZP[ 1|Sa2’Sa:§X]|:HXI a2 aJ (7)

is the conditional dlstrlbutlon o5, given S,,and S,;. This term can be numerically computed

by conditioning it on the pool of variables, in PSHA that appear in the selected ground motion
prediction equation and integrating over all passialues ofX. Given the assumption of joint
lognormality of S mentioned before, for every possible value ®f the quantity

PIS,; ]S, S5 X] can be computed simply with the knowledge of tlagiance-covariance
matrix of Sy, Sp, and S (e.g., Baker and Cornell, 2006) and the ground anoprediction
equation of choice. More mathematical details aowiged below.P[ X | S,,; S,;], which is the
probability of X conditional on the values ofS,,and S,;, can instead be obtained via
disaggregation and Bayes theorem as follows:

P[X.S, S, _P[S,; IS X]|P[X IS,

P[X|S,;S,]=
D08 Sl = Soprs 15 X[ P[X 18] T PISL IS,

(8)

where

) P[X |Sa3] can be derived using conventional scalar PSHAgdisation.

0 P[Sa aS,X] as for a similar term above, can be computed wily the knowledge

of the variance-covariance matrix 8f;, S,, andS;;, and the attenuation relationship of
choice

. Sl = Z P[S,,| S5 X]H X| S,] can be evaluated as explained above.

«  MARS,;] is the absolute value of the differential of tlemeentional seismic hazard curve for
the scalar quantit$,; at Site 3.

In more detail, the above conditional terms (i.B[S;|S,,;S,5 X] and P[Sa a3,X]) can be
obtained using the multivariate normal distributidheorem. More in general, if we call
S= [ S, San]T the vector of the natural logarithm of the randeamiables for which the joint
hazard is sought, theBis jointly normally distributed with a mean vect@) and variance-covariance
matrix (Z), i.e., in mathematical termsS =~ N(,u,Z). By partitioning S into 2 vectors

:[Sal,S‘.ﬂz,...,Sak]T and S, :[Sakﬂ,S‘,ﬂk+2,...,S‘,ﬂn]T whereS, comprises the conditioning variables
(in the example abovg,=[S,;] andS,=[Ss, Sig] ), one can write the following:

{2 {[2]fz =)

For jointly normal distribution, the conditional e and conditional variance can be determined as
S, I{S,=s}~N (:u2|1 7zz|1) (10)



Hp = K + Z212-111 (51 - /11); z2|1 = zzz - 2212'111212 (11)

The values of thee two parameterderived as shown above definke conditional distributics
mentioned above (i.eR[S, | S,,; S, X] and P[Saz | S, X]).

The joint hazard can also be disaggregated ondb®wrparameterX (for exampleM andR). The same
concept can also be applied to other ground mqtrediction equations (e, Chiou and Youngs, 200¢

Note that the conditional probability distribun P[Saz |Sa1;X] in theVPSHA calculation (see Eqgns.

and § should be also carried out with the same grountan prediction equation used in scalar PS
calculation.

Again using the assumption thg§ terms in Equation (1) are jointly normally distribd, the only
extension of traditional PSHA needed when implemerthis approach is a covariance madescribing
the spatial correlation dhe parameters of inter. This covariance matrix can lmemputed from the
correlation coefficients;; at multiple site. These correlation coefficientse precisely whehave been
developed in the companion report (Jayaram and B&k9h). The study in Section 2 of this rep
showed that an isotropic coratibn model appear to be satisfactory for mostiegfbns.

3.2 Application

To illustrate the effectsf spatial correlation of ground moti intensities on the joint haza we consider
two sites in San Francisco, which are 3.8km i (Figure 29, where two lowrise ductile concret

buildings are located. ®intend to estimate the joint hazard for-damped elastic spectral accelera

at 0.3s, whih is the fundamental period of these build. For ground motion compuion purposes we
have used the Abrahamson and Silva (1997) predietiuation for stiff soil sites.

Figure 29: Location of the two sites in SiFrancisco (Site 1: Long: -122.3925 Lat: 37.798ke 2 Long: -
122.4330 Lat: 37.8022)The two sites are 3.8km ap
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Figure 30: Seismic hazard curves f8(0.3s) at both sites

Figure 30 shows the conventional hazard curvesSf(.3s) at these two sites. These hazard curves,
however, are expressed in terms of mean annua cdtexceedance rather than annual probability of
exceedance. If the values 8f0.3s) generated at these two sites by the santbgeake were to be
considered as independent RVs, as is conventionlalhe (see Equation 2), then the joint MRD of
S,(0.3s) would be the one shown in Figure 3la. Insipgs note that even when the ground motion
parameters at both sites are computed independtly are still (marginally) dependent due to the
commonality of the same scenario events in the P8&&léulations (for details, see Bazzurro and Cdrnel
2002). In other words the contours of the joint MROFigure 31a. are ellipses and not circles.

If, however, the joint hazard is computed accordimdg=quation 1, the common inter-event error term
introduces a mild spatial correlation between theugd motion parameters at both sites. This case is
shown in Figure 31b and the correlation coefficiestween (the logarithm 08§,(0.3s) at Site 1 and (the
logarithm 0of)S,(0.3s) at Site 2 is 0.30. (Note that when the apatirrelation is modeled only by the inter
event term the correlation coefficien®(h), which in this case is equal mh), is identical between the

ground motion parameters at any two sites at astamice from one another). Of course, the two
marginal distributions of the joint distributionahlin in these figures are consistent with the hazardes

in Figure 30. It is clear by comparing both par@fi$-igure 31 that accounting for the inter-evemmne
makes the chance of observing high (or low) groonations at both sites significantly higher tharthia
independent case.

When the spatial correlation is appropriately acted for the ridge introduced by this additionalise

of correlation in the joint MRD 08§,(0.3s) at the two sites becomes considerably meidest (Figure
32). The joint MRD in Figure 32a was obtained bysuasing that the geologic conditions vary
significantly over the region while the Figure 3@bsumes that considerable clusters of sites exist w
similar soil conditions. Both correlation modelsregeveloped by Jayaram and Baker (2008b) in the
companion report. In the latter case the empirivadlel at the two sites predicts higher correlafipth)

=0.77) for the correlation d&(0.3s) than in the former cas@(h) =0.53). Finally Figure 32c shows for

comparison purposes the joint MRD 8§4(0.3s) computed using the correlation model by Babral.
(2003), which for this site-to-site distance progia correlation coefficient gh(h) =0.49 which is lower

than those from the previous two cases.
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Figure 32: Joint MRD 0fS,(0.3s) at the two sites shown in Figure 29 whervtiiaes 0f5,(0.3s) generated by the
same event at the two sites are considered todi@mby correlated according to the model by ajatayn and Baker,
(2008b) with no soil clustering, b) Jayaram and &@gR008b) with soil clustering, and c) Bo@el. (2003) in
addition to the correlation contributed by the irggent term.



The effects of including or neglecting the groundtion spatial correlation when estimating the
likelihood of future losses for these two buildingan be detected by inspecting the mean rate of
exceedance loss curves showed in Figure 33. Foillistrative example we assumed that each sgé&sho

a low-rise reinforced concrete frame building ofdam construction worth 10M USD. The differences
among these curves produced by the four of therfieeleling approaches considered in Figure 32 and
Figure 33 are more evident Figure 34. As expedatedsidering the ground motion correlation increases
the likelihood of observing very low and very hitgsses. Hence, the MRE loss curves that consider
correlation cross the independent case one at sm@enediate loss level. It is emphasized here that
neglecting the ground motion correlation overestasdhe likelihood of all losses in exceedanceboiua
300,000 USD and underestimates the likelihood skoking losses that are larger than that amount. An
analysis of the results from another perspectivgufeé 34b) shows that all the losses with meanrmetu
period longer than about 12 years are underestimbatee ground motion correlation is not considkgre
as routinely done. Finally note in Table 1 that|egist in this case, the estimates of the averagash
losses are fairly stable regardless of whethegtband motion spatial correlation is modeled or. fidiis

is due to the compensating over- and under-estimagirrors introduced by neglecting the spatial
correlation. The lack of effect on the AAL is, howee, not generally valid for other portfolios.
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Figure 33: Mean rate of exceedance curves for the portimiitvo buildings.
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Figure 34: Ratio of loss mean exceedance curves with respabetindependent ground motion case plotted versus

Loss (Million USD)
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Loss Ratio w.r.t. Independent

Spatial Spatial
Inter-event  Correlation Correlation
Independent Correlation w/o cluster w/ cluster
$88,722 $88,160 $88,163 $88,465

Table 1: Average Annual Loss (AAL) values for the portfotibbuildings estimated using four representations o
the spatial correlation of ground motion intensitia) independent ground motion and the two ditesprrelated
ground motion via inter-event error term only; pagally correlated ground motion without soil dlersng effects;
and d) with clustering effects.



4 EFFECTS OF SPATIAL CORRELATION OF GROUND MOTION ON LOSSES
TO LARGE PORTFOLIOSOF STRUCTURES

To study the effects of spatial correlation of grdunotion intensities on portfolio losses we
considered two hypothetical portfolios:

» Large Portfolio of 41,400 buildings located in thig counties around the San Francisco
Bay Area, with 200 properties in each postal cddgure 35).

» Small Portfolio of 200 buildings concentrated ire 84111 postal code downtown San
Francisco (Figure 36). In this portfolio all buihdjs are within 2km from one another.

In both cases we assumed that these buildingsoargide modern, ductile low rise concrete
moment-resisting frame structures with a replacemeue of $100,000 per property. To
simplify ground motion calculation we assumed NEHBRFC soil type conditions at all
locations.
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Figure 35: Hypothetical large portfolio of 41,400 buildings.
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Figure 36: Hypothetical small portfolio of 200 buildings.

As mentioned in the previous section, for portfelizith a large number of structures the
convolution of the joint hazard computed via ved®@8HA with the damage functions of each
structure is not feasible. In this case we seleatdtbnte Carlo simulation approach that uses a
catalog of earthquakes representative of 10,00zatians of next year seismic activity. The
location and the magnitude of the earthquakes énctitalog were selected according to their
occurrence rates and magnitude distributions. Tégssof the Monte Carlo approach are listed
below:

Step 1. For each earthquake rupture we simulate the graonotion at each building location
using the Abrahamson and Silva (1997) equationrdaug to one of the four modeling schemes:

(a) Independent ground motion at each site (see Equajio

(b) Constant correlation of ground motion intensityeath site. In this case the
correlation is introduced by the constant interrg\egror term in Equation 1.

(c) Site-to-site correlation of ground motion intersstiassuming the model by
Jayaram and Baker (2008b) without soil clusterifigots.

(d) Site-to-site correlation of ground motion intersstiassuming the model by
Jayaram and Baker (2008b) with soil clustering @ffeFor the problem at
hand, this is the most appropriate modeling approawcd, therefore, the
results from it are considered as benchmark forrédsalts from the other
three.

The result of this first step is a ground motiondam field that is independent in Case a and
correlated with increasing level of correlationdases b, c, and d.



Step 2. Given the ground motion at each site the buildosges are simulated from the damage
function for the type of concrete buildings consatk The damage function is simply a
relationship that for a given level of ground matimtensity (hereS,(0.3s)) provides the
expected damage ratio (i.e., the repair cost diviolethe replacement value of the building) and
associated variability. No building-to-building fostatistical correlation is considered, only the
functional correlation stemming from the use of shene damage functions for all buildings is.

Step 3. The losses at all sites are then summed to contipaitesses for the considered event.

Step 4. Steps 1-3 are repeated for all the earthquakdseircatalog, the losses for all the events
are then ranked from the highest to the lowestoimpute the loss Mean Rate of Exceedance
(MRE) curve for the portfolio for this realizatioithe highest loss is assigned a Mean Return
Period (MRP) of 10,000 years (or, equivalently, eam rate of exceedance of 1 x*L0the
second highest a MRP of 10,000/2=5,000 years (dR& of 2 x 10%, and so on. This process
produces one of the curves presented in light gr&ygure 37.

Step 5. For each of the four ground motion modeling scbg, the simulation process is
repeated 500 times to produce the 500 loss MREesustiown in Figure 37a-d. The losses for
each MRE (or MRP) are then averaged to producenden curve shown in red in Figure 37.

A comparison of the loss mean rate of exceedaneestus facilitated in Figure 38, which shows
the ratio of the loss mean rate curves for all foases to the loss mean rate curve of the
benchmark case (Case d, spatial correlation with cdostering effects). It is evident that
assuming independent ground motion as routinelyedanmost such applications provides a
poor representation of the risk. For this portfplibe frequent losses are overestimated by as
much as 200% and the large losses are underedtimptéo 60%. The inaccuracy in the loss
estimates is confined to +20% when the spatialetation is modeled via the inter-event term
(Case b) or via the spatial correlation scheme witlsoil clustering effects. Note that the levels
of accuracy achieved by Cases a-c when compardd thit benchmark results are portfolio-
dependent, it tends to increase for larger podfohnd to decrease for portfolios of buildings,
especially if they are tightly clustered. Note tkiad@ mean exceedance rate curves for Cases a-c
cross the benchmark one at a MRP of about 50yedlss case. This is not a general result since
the crossing point varies from portfolio to porifoand tends to occur at longer MRP values for
smaller portfolios, as will be shown later. Simijarin this case the approach with constant
correlation (Case b) and the approach with spawaielation without soil clustering effects
(which provides correlation coefficients that decagry rapidly to the plateau of constant
correlation modeled in Case b) provide very simMRE curves. This finding holds with
portfolios with a large number of buildings locatedan extended area and it is not a general
finding. Portfolios with fewer properties more dieted together will exhibit MRE curves for
Cases b and c that significantly differ, as willdte@wn below.

Finally, an inspection of Table 2 shows that th@aet on the Average Annual Loss (AAL) of
different ground motion spatial correlation modglitechniques is rather limited for this
portfolio. This is because neglecting or reducirgrelation lowers both tails of the loss
distribution with counteracting effects on the AAlstimates. It is emphasized, however, that
although this consideration about counteractingat$fis general the limited difference between



AAL estimates from different modeling techniquesnist. AAL estimates may be materially

different for portfolios with different charactetiiss, especially in cases with a few buildings

clustered together.
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Figure 37 Loss exceedance rate curves for the large portdsismming (a) independent ground motion intensities
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site with soil clustering effects. The red linghie mean exceedance curve.
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Figure 38: (a) Comparison among the mean loss exceedance prapabitves obtained for the large portfolio for
the four cases. (b) Ratio of mean loss exceedamdxpility curves to the one obtained with spati@irelation with
clustering effects.
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Table 2: Mean Loss for specific mean return periods andanyeannual loss for different ground motion
correlation modeling techniques. (Million USD)

Spatial Correlation Spatial Correlation Inter-event
MRP (year) Model (No . Independent
Model (Cluster) Correlation
Cluster)

10,000 | $ 433.00 $ 356.77 $ 358.14 $ 177.89
5,000 | $ 32801 $ 28731 $ 288.73 $ 176.65
2500 $ 25774 $ 228.78 $ 22378 $ 166.27
2,000 $ 238.85 $ 213.73 % 20793 $ 150.74
1,000 | $ 18133 $ 163.80 $ 15850 $ 128.98

500 | $ 13091 $ 12027 % 116.27 $ 99.89
250 | $ 86.70 $ 8227 $ 79.84 $ 67.95
200 | $ 7543 $ 7157 $ 69.55 $ 62.54
100 | $ 4418 $ 4329 $ 4258 $ 42.83

50| $ 2247 % 2315 % 23.14 % 23.00

AAL $ 186 $ 18 $ 187 $ 1.92

To support some of the statements above regarti@gortfolio-dependency of some of the
findings discussed for large portfolio of propestieve consider the smaller portfolio displayed in
Figure 36. The loss exceedance rate curves fopthi$olio are presented in Figure 39 while the
ratios of the mean exceedance rate curves are slwviigure 40. When the portfolio is
comprised of fewer buildings concentrated in a ggngeographical area, then the likelihood of
observing much larger (or smaller) ground motioantlexpected for the given event_at thk
building sites are much higher. Such instancesdeguately modeled by the benchmark Case d
and by Case c, which both captures spatial comelatand increasingly less appropriately
modeled by Cases b and a. With this consideraiomind, it appears intuitive that the MRE



MRP (year)

MRP (year)

curves for Cases a and b differ significantly frdrase obtained in the benchmark Case d. In this
case the results for Case c are very similar tadhget results because all the buildings in this
portfolio are very closely spaced and the two datien models do not significantly differ at
very short distances. If the geographical arealdeah, say, a county rather a postal code, the
buildings would have been, on average, farthertdpam one another and in that case Case ¢
would have generated less accurate MRE curvesllfibg inspecting Table 3 it is clear that in
this case as well the compensating effects of HaEdurate estimates of the likelihood of
observing very large and very small losses provigle€Cases a and b cause AAL estimates that
are fairly precise. The AAL estimates from the ipeledent ground motion case and the constant
spatial correlation case differ more markedly frtra target results of Case d for portfolios of
only a few buildings clustered together.
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Figure 39 Loss exceedance probability curves for the smatff@lio assuming (a) independent ground motion
intensities at each site; (b) constant spatialetation via the inter-event error term only; (casally correlated
ground motion intensities at each site without shiktering effects and (d) spatially correlatedumd motion
intensities at each site with soil clustering effed he red line is the mean exceedance curve.
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Table 3: Table 4 Mean Loss for specific mean return periodi @a/erage annual loss for different simulation

methodologies. (Thousand USD)

Spatial Correlation Spatial Correlation Inter-event
MRP (year) Model (No ) Independent
Model (Cluster) Correlation
Cluster)

10,000 | $ 539549 $ 4,95759 $ 255022 $ 1,613.80
5,000 | $ 3,664.73 $ 3,368.57 $ 1,868.93 $ 1,021.10
2500 | $ 224157 $ 2,130.28 $ 1,361.94 $ 855.30
2,000 | $ 192282 $ 1,826.88 $ 1,227.86 $ 813.73
1,000 | $ 116159 $ 1,105.42 $ 866.60 $ 681.38

500 | $ 626.72 $ 61061 $ 57269 $ 528.05
250 | $ 288.44 % 29145 $ 34090 $ 358.61
200 | $ 21783 $ 222.00 $ 279.76  $ 302.36
100 | $ 8201 $ 84.74 $ 12780 $ 171.07

50| $ 2469 $ 2543 % 4030 $ 51.89

AAL $ 564 $ 551 $ 553 $ 5.73
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5 CONCLUSIONSAND RECOMMENDATIONS

This study has addressed the issue of spatiallabore of ground motion intensities generated
by a single earthquake and has shown how the bmatieelation can be incorporated into

assessing both the joint seismic hazard at mulsijées and also portfolio losses. The results of
this study have been presented in this report anithe companion report by Jack Baker and
Nirmal Jayaram of Stanford University.

The study discussed here consists of three mats.pHne first part deals with ground motion
correlation in synthetic datasets and complemdmsstudy performed at Stanford University
using real ground motion recordings. Synthetic da&e used here to investigate statistical
properties of the spatial correlation function tltauld only be addressed with a wealth of
spatially distributed ground motions generatedh®ydame earthquake that is simply unavailable
from historical events. This preliminary study r&mwn that an isotropic model for the spatial
correlation is, in general, supported by the d&fareover, the spatial correlation between
intensities at two sites has been found to be digrgnon the site-to-site distance but, in most
cases, independent of where the two sites weréddaerith respect to the fault rupture. The only
exception is for near-fault sites within 10km tdk@0from the rupture whose spatial correlation
of intensity measures has been observed to be Ithaerthat of sites at the same distance but
farther from the rupture. Note that the statemeait®ve could gain strength from more
corroborating evidence that may come from analyadditional synthetic datasets generated by
a larger pool of researchers for a larger set ahgaakes. Although beyond the scope of this
study, note that the results of the correlatiomlgtof synthetic data can be used as a guidance in
assessing whether the ground motion simulationnigcles adopted to produce these time
histories have, statistically speaking, the samatialpsignature as those generated by real
earthquakes.

The second part of this study showed how the dpadiaelation can be incorporated into the
computation of the joint seismic hazard at multipiees using a direct numerical integration
approach. This has been achieved by modifying tleetdf Probabilistic Seismic Hazard
Analysis (VPSHA) tool that was originally developied computing the joint hazard of different
ground motion parameters at the same site. Thacagiph included here also shows how the
joint hazard computation can be included in the lestimation of a portfolio of two sites located
in San Francisco 4km from each other. We also gheverrors introduced in the hazard and loss
estimates when the spatial correlation is eithgtewted or coarsely modeled.

With the current computer resources, the approaated on VPSHA and, therefore, on
numerical integration can produced accurate refaitgortfolios of about five sites. Beyond this
threshold the accuracy in the estimates of extj@mé ground motion hazard and losses may go
down because of the need of using coarser binagltiie numerical integration. To successfully
estimating earthquake losses for large portfoliopobperties in the presence of spatially
correlated ground motion intensities we adopted @t Carlo simulation approach that we
apply here to two large portfolios of structureshiea San Francisco Bay Area. Again, the effects
of neglecting or crudely modeling spatial corredatare outlined.



The results show that, as expected, an appropmaigeling of spatial correlation of ground
motion is essential when a portfolio of structureslustered in a rather small region (e.g., a
postal code) of and becomes less important wherpdingolio is spread out in much larger
geographical area (e.g., the six counties in the Bancisco Bay Area). Note that the latter
statement above holds true only when one is iniedes the loss statistics for the entire (large)
portfolio. If one drills down on the results frorhet analyses to extract the loss statistics for a
smaller area of the portfolio (e.g., the subsestofictures within a city boundary or a postal
code), then those loss estimates losses will notadmurate unless ground motion spatial
correlation is adequately modeled.
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